Table 2. Rationale for use of indicators in water-resource-quality-monitoring programs for meeting water-management objectives relevant to selected su uses. These are status and trends indicators meant to illustrate the suitability of a water resource for use by a management objective rather than demonstrated of a particular management objective on that water resource—Continued **Ecological condition** **Economic concerns** Human health and aesthetics | Categories of indicators | | | | | | | | |---|--|---|--|---|---|--|-------------------------| | | Consumption of fish, shellfish, and wildlife | Public water
supply and food
processing | Recreation: Boating,
swimming, and fishing
(including catchability) ¹ | Aquatic and semi-
aquatic life, protected
species and aquaculture | Industry: Makeup
and cooling water,
and other types
of water | Transportation and hydropowe | | | Suspended sediment turbidity, color. | | Sedimentation
affects longev-
ity of dams and
treatment. | Turbidity unaesthetic in some locales. | Sedimentation reduces
habitat, clogs gills, and
buries organisms. Tur-
bidity affects primary
productivity [1, 36]. | Amount affects
treatment, thus suit
ability and cost of
process waters. | Suspended sedi-
ment reduces
equipment
longevity.
Sedimenta-
tionaffects
dams. | - Sed
cl
ir
co | | | | | Part 3—Indicators of physic | ical habitat—Continued | | | | | Bed sediment and sub-
strate characteristics:
Size distribution,
embeddedness. | Affects chemical availability. | A source of suspended sediment. | Mud bottoms are unaes-
thetic and reduce fish
and habitat availability
[11]. | Affects habitat and chemical availability. Determines suitability for shellfish culture [3, 12]. | Affects treatment, thus
suitability and cost
of process waters. | s Sediment affects
equipment
longevity,
bank stability. | ir
ve | | Geomorphology: Slope,
bank stability, channel
morphology. | Alters contact time with toxicants. | | Type of habitat (erosive and depositional) governs recreation potential [11]. | Type of habitat
(erosive and
depositional)
controls biotic
community [12, 15]. | Erosion of banks
threatens
structures. | Erosion and
deposition
affect depth,
dam capacity
navigation
and dam lon-
gevity [32]. | | | Riparian or shoreline vegetation, canopy, cover. | Filters out toxics. | Reduces turbidity. | Affects temperature, aesthetics and habitat, thus swimming and fisheries [10]. | Affects habitat,
temperature,
productivity, oxygen,
and inputs of organic
matter [10, 12]. | do | Snags from
fallen trees
block access.
Plants alter
flow of irriga-
tion water. | Ripo
al
of
cr | | | | | | | | | | Part 4—Indicators of watershed-level stressors